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Abstract. In lhis paper we derive an expression for the superconducting transition IemperaNre 
of a uranium-based heavy-fermion system within a modified weak-coupling theory of 
supe-conductivily. It is found Wt the energy dependence of the enhanced density of stales for 
lhe heavy-fedon system clearly manifests itself in the theory. and the Kondo energy nahlrally 
mkes the role of cutdff, as long as the effective cut-off energy is large in comparison. The 
numerical analysis confirms lhis result and shows that the superconducting transition tempralure 
is indeed independent of Lhe effective CUI-off energy employed wilhin the approach. 

1. Introduction 

The nature of superconductivity in heavy-fermion (HF) systems is still unclear. Although 
it is generally accepted that pairing of the characteristic heavy quasiparticles must play a 
crucial role in the superconducting mechanism, the source of this mechanism and the nature 
of the associated order parameter are not well understd. Of particular interest is the 
compound UPt3, which exhibits a phase diagram that is unique [1,21. The existence of 
two superconducting phase transitions can only be. explained by a theory that postulates an 
exotic superconducting state. 

On the phenomenological side, present theories can be distinguished by two critical 
ingredients: the symmetry of the Cooper pairs that are formed, whether it be p-wave or 
d-wave, and the degree of spin-orbit coupling in the system. At the present time, there is 
no single model that is consistent with all the experimental facts. For a brief review see 

A thorough microscopic prescription seems even further from any completion. 
Microscopic theories applied to these systems, in particular UPt,, are based on one of 
two different pairing mechanisms; a conventional quasiparticle-phonon interaction (see for 
example 141) or a spin-fluctuation-type process. Recent literature has even suggested that it 
is the coexistence and interplay of both mechanisms that leads to the anomalous properties 
displayed in these systems [SI. Both weakcoupling and strong-coupling approaches, 
containing many different forms of quasiparticle pairing, have been put forward. Of all 
the exotic microscopic theories that have been proposed. none are ultimately conclusive. 

In this paper we show how the energy dependence of the enhanced density of states 
for a highly correlated f-electron system manifests itself when we apply a simple model 
of superconductivity. The simplicity of the approach rests on the fact that we treat the 
interaction, Vi",, that binds two quasiparticles together, as a phenomenological parameter. 
Apart from this one input, we essentially apply the weak-coupling approach of the BCS 
theory 161, and its extension by Balian and Werthamer [7], to a Fermi liquid system in 
which the composite quasiparticles are anomalously heavy. 
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We start by deriving a mean-field quasiparticle Hamiltonian in which we have 
incorporated a quasiparticle coupling term. This naturally describes the Fermi liquid state of 
the HF system in terms of two quasiparticle bands and provides the basis to which we apply 
a s a - t y p e  theory. We first construct a one-band theory based on the lower quasiparticle 
band, and later consider the inclusion of a term which arises from the upper band. The 
model applies equally to p- and d-wave pairings. This is solved numerically to give the 
superconducting transition temperature, Tc, in terms of the quasiparticle interaction, Vt. We 
then derive an analytic expression for the superconducting transition temperature, employing 
a simple approximation. This enables us to extract the underlying physics of the problem in 
a clear way. The theory also does not encompass the effects associated with spin fluctuations 
between quasiparticles at any stage, thus a potential pair-breaking process is neglected. We 
find that the final expression for the superconducting transition temperature is composed of 
two distinct contributions. In the first term the cut-off is provided by the interaction, and 
the density of states is of the bare (unenhanced) form. The second term contains a cut-off 
provided by the Kondo energy and the effective density of states is enhanced. The latter 
term will always be dominant for HF systems. A comparison with the numerical results 
confirms this picture. One conclusion of our work is that the isotope effect should be zero 
or very small even if HF superconductivity is phonon mediated. 

2. Mean-field theory 

Our starting point is the generic model for HF systems; the Anderson lattice model 

where is the dispersion relation for the conduction electrons, EO is the bare energy of 
the impurity electrons, and U is the on-site Coulomb repulsion. &,, is the hybridization 
term. This is usually written as V,,,, but for clarity we use an alternative notation so that 
there is no confusion with the interaction, V,  between pairs of quasiparticles. All energies 
are defined relative to the Fermi surface. 

We consider this Hamiltonian in the limit of infinite U so that the occupancy at any 
given site is, for a uranium HF compound, confined between two and three f electrons. We 
shall not consider the simpler case appropriate for cerium systems. The introduction of two 
slave boson fields on every site eliminates the Coulomb interaction in this limit, and creates 
in return a constraint term incorporated into the Hamiltonian via a Lagrange multiplier [8,9]. 
It is with respect to the boson fields that the mean-field approximation is made [IO]. In 
this way, the operators are treated as classical fields, the symmetry of the Hamiltonian is 
broken, and the constraint becomes a global one. We thus derive the following mean-field 
Hamiltonian [ 111 

in which we find renormalized values for the f-level energy, (shifted above the Fermi 
level) and hybridization, S = shd(nf  - 2)(3 - nf))  (reduced by an order of magnitude) 
where s h  is the bare form assumed to be independent of wave vector and spin. 

This expression can be easily diagonalized into a form that clearly represents the 
quasiparticle energy dispersion 
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where Erm and Efm are the lower and upper HF band energies given by 

and aim and pim create lower- and upper-band quasiparticles respectively. 
In the temperature range of interest U P t 3  has an antiferromagnetic structure with a small 

moment. We assume that this can be treated within a band theoretical approach, so that 
for the very small ordered moment the energy of the polarized bands are hardly changed 
[13]. Thus for simplicity we shall continue to use equation (4) to describe the quasiparticle 
energies. This is consistent with the experimental observation that TF does not vary much 
when the antiferromagnetism is removed, although the splitting between the two transition 
temperatures does disappear 1141. 

We first focus solely on the lower band and consider a general pairing interaction, 
which couples the quasiparticles so that they form Cooper pairs. The pairing quasiparticle 
Hamiltonian is then given by 

The origin of these mechanisms is not considered in the analysis that follows. Although 
we are constructing a model that employs an interaction over a characteristic energy, which 
we call 0, we are nor asserting that it is, in fact, a quasipa~ticle-phonon mechanism. The 
interaction could arise from paramagnons in which case Q would be simply a characteristic 
magnetic energy. The interaction, V(k, k') depends on both the magnitude and direction 
of k and k'. It may be expanded in terms of spherical harmonics. and the coefficients, 
q(lkl, lk'l), are separated out in the usual way 1151. We assume that these coefficients 
are independent of Ikl and &'I, both of which are close to kr. These are then our 
phenomenological inputs of the theory, which we treat as constant over the given energy 
range 

The pairing of quasiparticles caused by these different types of interaction will ultimately 
lead to the same form of expression for the transition temperature. In this way, the Tc 
for p-wave pairing is a function of V, and correspondingly the Tc for d-wave pairing is a 
function of V.. In this paper we will not specify which of these interactions is dominant, 
but consider a general interaction, q, which gives rise to I-wave pairing. 

3. Modified BCS thwry 

In UPts, the Kondo temperature (40 K) is much larger than the Nee1 t e m p a w e  (5 K) 
which, in tum, is larger than the superconducting transition temperature (0.5 K). It is 
reasonable, therefore, to employ a weak-coupling approach. In the usual manner we derive 
an integral equation which defines the transition temperature, Tc. The crucial point is that 
the order parameter, defined in terms of V,. is assumed independent of q. It is then 
constant over the integration and simply cancels. The resulting expression is then very 
similar to that derived in the standard Bcs theory. For the higher-order angular momentum 
expressions. the angular dependence of the order parameter can be easily dealt with so 
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that the integral equation becomes a general relation that applies equally to each of the 
components, V& k'), V,(k, k') and Vz(k, k')[151 
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where po is the bare density of states, which is taken as constant at the Fermi surface, p is 
the chemical potential and pc is defined in the customary way as (l/Tc). We now change 
the variable of integration and integrate with respect to the quasiparticle band energy instead 
of the bare conduction electron energy. This new expression then contains a quasiparticle 
density of states which is explicitly included 

Here E; is simply E"(6k) - p and 0 represents the lower cut-off. The upper cut-off 
however is not 0, as employed in a conventional BCS-type theory, but E ,  which defines 
the upper edge of the lower quasiparticle band (see figure 1). We are assuming throughout 
this paper that 0 > E, so that the integral always has this electronic energy for its upper 
cut-off. E,,, can be quite easily expressed in terms of if in the following way 

where W is the bandwidth, N the impurity f-level degeneracy and nr is the impurity site 
valence, which for uranium HF systems will fluctuate between two and three. 

Figure 1. The upper and lower quasiparticle bands showing the 
two different ranges over which the inlegation is performed. em 
represents the upper edge of the lower band and M is the general 
wt-off employed. Both an measured relalive to )L. the chemical 
potential. 

The choice of limits is more subtle than it at first seems and is crucial in the final 
analysis. The superconductivity is assumed to be a small perturbation on the HF states and 
so the interactions should be described in terms of the dressed quasiparticles. The Kondo 
temperature, TK, is always found to be the greater energy scale when compared with the 
superconducting transition temperature, Tc. This must always be the case, because above 
TK, the system exhibits classical local moment behaviour. Measurements of the specific 
heat jump at Tc also imply that it is the heavy quasipmicles that play the central role in HF 
superconductivity. 

We must now deal with the integral given by equation (8). This can be done both 
numerically and analytically, using a suitable approximation. It is worth noting that the 
usual analytic approach applied successfully in the conventional BCS theory breaks down 
for equation (8). We employ a different analytic approach that is workable and consistent 
with the numerics, and fulthermore, reveals the underlying physics of these systems in a 
clear, natural way. 
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Figure 2. The variarion of the uansition 
temperature, 7,. with lhe pairing plentid. 
V,. The solid line has been obtained by 
including excitalions within lhe lower bnnd 
only while the dashed line represenls Ihe 
full theory in which the upper band is also 
included. The following parameten were 
assumed: W = 10 eV. Sh = 1 eV N = 6 
and nr = 2.85. 
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4. The numerical solution 

To evaluate the integral in equation (8) numerically, we essentially need five input 
parameters. These are three energies, the bandwidth, W, the characteristic cut-off energy, 0, 
and the bare hybridization, St,; and two numbers, the f-level degeneracy, N, and the f-level 
occupancy, nc. The other relevant energies, the chemical potential, /L and the renormalized 
f-level energy, 6, can be derived using the zero-temperature results of the slave-boson 
mean-field theory [ I  1,121. These give the following relations 

p. = W ( 3  -nf) (10) 
and 

We first take W and Sh as 10 eV and 1 eV respectively. We also assign realistic values 
to N (= 6) and nc (= 2.85). A plot of l/V, against In(Tc) with these inputs is shown in 
figure 2. This reveals a linear behaviour in which there is both a negative gradient and 
intercept as might be expected. The value of v( that would comspond to a superconducting 
uausition temperature of 0.5 K is almost 2 x eV. If either the bare hybridization or 
the degeneracy are increased in value, then the corresponding interaction, Vj must be larger 
for a given T,, the greater effect occurring for Sh. An increase in the bandwidth, however, 
requires that V, be smaller for the same Tc. The most profound effects on the results are felt 
when the valence is varied between its two b i t s ,  two and three. The chemical potential, 
renormalized hybridization and renormalized f-level energy all depend on what value the 
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Figure 3. The variation of the muplina I$, required IO generate a transition to 1-wave 
suprwnduclivity at a m i t i o n  tunprature. T. = 05.  This figure shows the tendency towards 
superconductivity is smngly enhanced in the Kondo limits, nr 2.8s OI nf < 2.1. In these 
regions arelatively s d  value of VI is required io givethe observed value of 7.. with Ihe pairing 
potential. VI. The solid line has been obtained by including excitations within the lower band 
only while the dashed line represents lhe full theory in which tk upper band is also included. 
The following parsmeters were assumed W = 10 eV, SI, = 1 eV and N = 6. 

valence holds. Figure 3 shows how the interaction required to yield a transition temperature 
of 0.5 K varies with nr. We see that a very small value of I$ is required close to the Kondo 
limit and a relatively large value for the intermediate region in which 2.2 < nf < 2.7. The 
gradient of the plot shown in figure 2 is correspondingly larger for values of nf close to the 
Kondo limits. 

5. The analytic approach 

We find that a simple approximation scheme can reproduce the numerical analysis extremely 
well. It is also serves to unveil the underlying trends that give rise to these particular results. 
To proceed analytically with the integral of equation (8) then, we must at some point make 
an approximation. We do this by replacing the tanh function with an angular form, so that 
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tanhx Y 

XQ-1  
-1  < x  < 1 

This also enables us to extract the underlying physics throughout the calculation. It is 
easy to see that the magnitude of the real tanh function is always less than this angular 
approximation. This will mean that the value of VI required to obtain the observed value 
of Tc will always be too low. We then obtain three trivial integrals 

Upon evaluation, the terms combine to form the following expression 

where the enhanced density of states is given by p. = ~ o ( S ~ / G ) ~ .  We have defined A as 
where S is a degeneracy factor resulting from the energy cut-off at the edge of the 

lower band. This is equal to J ( N  - 1 - nf)/(N - 1). We have also introduced Q and C 
which are given by 

and 

It is apparent that this expression is composed of two different forms of contribution. There 
are those terms which essentially reproduce the conventional BCS result in which A takes 
the place of 00. There are also other terms where the characteristic enhancement factor, 
(s*/<?), comes explicitly into play. 

Thus, the general expression is made up of two distinct contributions; one that involves 
the bare density of states, po and the interaction cut-off 0, and the other which contains the 
enhanced density of states, p*9 and is independent of 0. 

If the enhancement of the density of states characteristic of HF systems was in fact 
radically reduced then the Bcs-type term would eventually dominate 

G = aAexp(-l/poQ). (19) 



502 C A Gehring and L E Major 

For our analytic approximation, a is given by exp(l)/2 1.36, compared with the 
BCS analytic result where a = 1.134. In this sense, the result would be very similar to the 
original Bcs result. The energy cut-off, A, is given by the geometric mean of the upper and 
lower cut-offs, 0 and cot, and is smaller than 0 (for E ,  e 0). This effective energy cut-off 
is still, however; relatively large and the density of states is that for the bare conduction 
electrons. 

For HF systems, however, the second contribution to the transition temperature will 
always dominate and the pairing of highly correlated quasiparticles will prevail 

Tc = bStexp(-l/p,&) (20) 

where b is exp(C), which is approximately unity. Here the cut-off is proportional to the 
effective Kondo energy, and the density of states is of the enhanced form ( p .  = S2/i?po = 
nf/if). The interaction, &, acts only between heavy quasipanicles in close proximity to the 
Fermi surface. 

The energy s1 is seen to vary linearly with 6. In this theory we have assumed that 
0 2 & throughout, as shown in figure 1. We note that in the limit G/O << 1 then St is 
independent of 0, the interaction cut-off energy. This means that the transition temperature 
is independent of the cut-off energy, 0, provided that 0 >> <f. The Kondo energy has taken 
the role of energy cut-off within the enhanced expression. Hence the exponent a associated 
with the isotope effect would be zero even if the interactions were phonon mediated in this 
limit. 

The fact that the massively enhanced form of the density of states dominates the 
expression for T, is verified by a comparison with the numerical result. A plot of 
equation (20) containing the same parameters as the numerical plot, yields the same linear 
dependence. It only differs in that it always slightly overestimates the value of I /V,  for a 
particular temperature. This is merely the manifestation of the approximation we introduced 
to evaluate the tanh function (we obtain the same factor if the standard BCS theory is 
evaluated in this approximation). 

6. The upper-band term 

So far we have considered a theory that is applicable only to the lower band. A rigorous 
treatment of both quasiparticle bands would involve a pairing Hamiltonian which would 
contain all possible types of pairing between quasiparticles. This would also contain several 
different interactions, V,, corresponding to particular pairings. We have only considered the 
scattering of two lower-band quasiparticles, with momenta and spin (k’, U )  and (-k’, U ) ,  

into another lower-band pair with momenta and spin (k, U) and (4, U). In a two-band 
theory, other quasiparticle pairings may be significant. In particular, the scattering of two 
lower-band quasiparticles into two upper-band quasiparticles or one lower-band quasiparticle 
and one upper-band quasiparticle both might play an important role in a superconducting 
state. In a later publication we shall examine the two-band theory in its fullest sense, but 
here, instead, we shall only consider the extension of this theory so that it incorporates, 
in some way, the former inter-band pairing, that is the scattering of two lower-band 
quasiparticles into two upper-band quasiparticles. 

We do this by simply extending the energy range so that we include a lower portion 
of the upper band up to the Debye energy (see figure 1). The model thus assumes that the 
same pairing interaction acts on both the lower-band and upper-band quasiparticles. The 
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extra term we should include is then of the following form 

When this is included in the numerical calculation, it causes a very small increase in T, for 
a given value of 6. Apm from this the plot is essentially unchanged. This is shown in 
figure 2. 

It is also interesting to see how this term affects the analytic results. In the same way 
as before we approximate the tanh function to a linear form. In this energy range it will 
simply be equal to one (for T, << TK, 2rf/ksTC >> l), so that we obtain an integral which 
is almost identical to 13, differing only in the limits of the integration. We shall call this I ,  

where 2G marks the bottom of the upper band. 
Upon evaluation, we get the following 

Combining these terms with those of equation (15). we obtain a new expression for l/poVi 

where C‘ is given by 

Here A’ is 06‘ where 6’ is simply equal to 8/& and a’is given by 

in the limit rf /O << I .  

temperature that now arise. Thus, after expanding, we get 
As before, we consider the two expressions for the superconducting msi t ion 

Tc = b‘a‘exp(-l/p,V,) (28) 

where b’ is exp(C’). 
We see that the resulting expressions are again consistent with the numerical analysis. 

The inclusion of the upper-band term has very little effect upon the final expressions. The 
second enhanced form will dominate for HF systems as before. 
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7. Discussion 

We have derived an expression for the superconducting transition temperature of an HF 
system using a simple weak coupling approach. This is found to be independent of the 
cut-off energy, 0, provided it is large compared with the Kondo energy. Instead, we find 
that the Kondo energy takes on the role of cut-off and naturally arises in equations (22) and 
(29), which define the transition temperature with and without the inclusion of an upper- 
band term. In this way we see that the fundamental shucture of the heavyquasiparticle 
bands, which characterizes HF systems, manifests itself quite clearly within this basic theory 
of superconductivity. 

The inclusion of the upper-band term has in fact little effect upon the outcome. It shows 
that incorporating the heavy-quasiparticle band structure in such a way so as to include the 
scattering of a pair of quasiparticles from the lower to upper band does not change the basic 
results of this theory. 

The size of the pairing interaction between quasipaiticles required to yield a transition 
temperature of the observed value for W t 3  is two orders of magnitude smaller than that 
expected for a conventional superconductor. This presumably derives from the fact that it 
is the enhanced density of states that enters into the exponent in expressions (22) and (29). 
and so, the interaction may be smaller than usual. 

There are, of course, many questions that still remain, but perhaps the three most urgent 
ones to be dealt with for this particular model are: 

( I )  What effect on this type of theory will the inclusion of quasiparticle interactions 
have? 

(2) How would the proper treatment of the underlying antiferromagnetism affect these 
results? 

(3) Will the introduction of a microscopically derived shucture for the interactions, V,, 
reveal a preferred pairing symmetry within this model? 

We shall address these issues in a later publication. 
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